## Macrosphelides C and D, Novel Inhibitors of Cell Adhesion

Satoshi Takamatsu, Hidemi Hiraoka<sup>†</sup>, Yong-Pil Kim, Masahiko Hayashi, Masahiko Natori<sup>†</sup>, Kanki Komiyama and Satoshi Ōmura\*

The Kitasato Institute,
5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

† Department of Applied Biological Sciences, Nihon University,
1866 Kameino, Fujisawa-shi, Kanagawa 252, Japan

(Received for publication July 14, 1997)

In our continuing of a search for novel anti-cell adherence compounds of microbial origin, we have reported fermentation, isolation and biological activities of macrosphelides A and B from the culture broth of *Microsphaeropsis* sp. FO-5050 in a previous paper<sup>1,2)</sup>. The absolute configuration of macrosphelides A and B were clarified by single crystal X-ray analysis and chemical conversion including a modified Mosher's method as 3S, 8R, 9S, 14R, 15S and 3S, 8R, 9S, 15S, respectively, further, the total synthesis of macrosphelide A has also been done *via* asymmetric dihydroxylation in eleven steps<sup>3)</sup>.

During the purification of macrosphelides A and B in the cultured broth of FO-5050, we discovered two new 16-membered macrocyclic compounds, macrosphelides C (1) and D (2) (Fig. 1). This paper describes physicochemical properties structural determination and biological activities of 1 and 2.

The fermentation of strain FO-5050 was carried out in the same way as reported previously<sup>1)</sup>. Compound 1 was purified by silica gel chromatography (CHCl<sub>3</sub>-CH<sub>3</sub>OH, 50:1 v/v) and HPLC (Senshu Pac Pegasil

ODS; i.d.  $2 \times 25$  cm, detection, UV at 210 nm; flow rate, 7 ml/miniute; solv. sys., CH<sub>3</sub>CN-H<sub>2</sub>O, 4:6 v/v and CH<sub>3</sub>OH-H<sub>2</sub>O, 4:6 v/v) from the EtOAc extract of culture broth. On the other hand, purification of the EtOAc extract from mycelium by silica gel chromatography (CHCl<sub>3</sub>-CH<sub>3</sub>OH, 50:1 v/v) and HPLC (solv. sys., CH<sub>3</sub>CN-H<sub>2</sub>O, 4:6 v/v) gave 2. Finally, compounds 1 and 2 were obtained in the yield of 1.8 mg and 8.0 mg, rspectively, together with macrosphelides A (580 mg) and B (16.1 mg).

Physico-chemical properties of 1 and 2 are summarized in Table 1. Compound 1 was isolated as hygroscopic needles. The molecular formula of 1 was determined as C<sub>16</sub>H<sub>22</sub>O<sub>7</sub> by HR-FAB-MS. The IR absorptions at 3462 cm<sup>-1</sup> and 1732 cm<sup>-1</sup> of 1 showed the presence of hydroxy group and ester functions, respectively. In the <sup>1</sup>H NMR spectrum of 1 (Table 2), the signals at  $\delta$  2.36 (dddd, J = 13.9, 10.1, 9.5, 1.5 Hz, H-8a) and  $\delta$  2.55 (m, H-8b) were newly observed compared with those of macrosphelide A (3). In the <sup>13</sup>C NMR spectrum of 1 (Table 3), methylene carbon signal was also appeared at  $\delta$  38.8 (t, C-8) compared with that of 3. These signals suggest the presence of methylene carbon in the molecule of 1. In addition, the multiplicity of methine ( $\delta$  5.10, m, H-9) and olefinic proton ( $\delta$  6.85, ddd, J=15.5, 9.5, 6.5 Hz, H-7) adjacent to the methylene carbon at C-8 position were changed. Thus, compound 1 is assumed to be a 8-deoxy derivative of 3. The <sup>1</sup>H-<sup>1</sup>H COSY of 1 showed the connectivity between C-6 and 9-Me via C-8 methylene (data not shown). Final confirmation of the structure of 1 was undertaken using the HMBC (8 Hz) experiment as shown in Fig. 1. These results clearly indicated that the structure of macrosphelide C (1) is

Table 1. Physico-chemical data of 1 and 2.

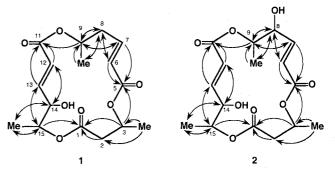
|                                                    | 1                                                                       | 2<br>Colorless oil                                                 |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Appearance                                         | Hygroscopic needles                                                     |                                                                    |  |  |
| MP                                                 | 80∼84°C                                                                 |                                                                    |  |  |
| $[\alpha]_D^{20}$                                  | $+29.5^{\circ}$ (c 0.10, MeOH)                                          | $+65.3^{\circ}$ (c 0.34, MeOH)                                     |  |  |
| Molecular weight                                   | 326                                                                     | 342                                                                |  |  |
| Molecular formula                                  | $C_{16}H_{22}O_7$                                                       | $C_{16}H_{22}O_8$                                                  |  |  |
| Pos. FAB-MS $(m/z)$                                | $327 (M+H)^+$                                                           | $343 (M + H)^+$                                                    |  |  |
| HR Pos. FAB-MS $(m/z)$                             | Found 327.1451 ( $C_{16}H_{23}O_7$ )                                    | Found 365.1237 (C <sub>16</sub> H <sub>22</sub> O <sub>8</sub> Na) |  |  |
|                                                    | Calcd 327.1443                                                          | Calcd 365.1212                                                     |  |  |
| UV $\lambda_{\max}^{MeOH}$ nm (log $\varepsilon$ ) | 207.5 (4.22)                                                            | 207 (4.21)                                                         |  |  |
| IR $v_{\text{max}}^{\text{KBr}}$ cm <sup>-1</sup>  | 3462, 2924, 1732, 1701, 1643, 1452, 1384, 1186, 1053                    | 3400, 1716, 1660, 1367, 1188, 1055, 985                            |  |  |
| Color reaction                                     |                                                                         |                                                                    |  |  |
| Positive                                           | $50\% \text{ H}_2\text{SO}_4 + \Delta$ , iodine                         | $50\% \text{ H}_2\text{SO}_4 + \Delta$ , iodine                    |  |  |
| Negative                                           | Dragendorff's reagent, Ehrlich's reagent $+ \Delta$ , ninhydrin reagent | Dragendorff's regaent, Ehrlich's reagent + △ ninhydrin reagent     |  |  |

Table 2. <sup>1</sup>H NMR chemical shifts of 1, 2 and 3 in CDCl<sub>3</sub>.

| Н            | 1    | (M, J value in Hz)               | 2    | (M, J  value in Hz)  | 3ª   | (M, J  value in Hz) |  |
|--------------|------|----------------------------------|------|----------------------|------|---------------------|--|
| 2a           | 2.63 | (1H, dd, 14.5, 3.0)              | 2.65 | (1H, dd, 13.5, 11.5) | 2.60 | (2H, dd, 8.3, 4.3)  |  |
| 2b           | 2.51 | (1H, dd, 14.5, 8.5)              | 2.52 | (1H, dd, 13.5, 3.3)  |      | •                   |  |
| 3            | 5.30 | (1H, m)                          | 5.35 | (1H, m)              | 5.38 | (1H, m)             |  |
| 6            | 5.80 | (1H, ddd, 15.5, 1.5, 1.5)        | 5.96 | (1H, d, 15.8)        | 6.03 | (1H, dd, 15.5, 1.8) |  |
| 7            | 6.85 | (1H, ddd, 15.5, 9.5, 6.5)        | 6.64 | (1H, dd, 15.8, 7.9)  | 6.88 | (1H, dd, 15.5, 3.3) |  |
| 8a           | 2.36 | (1H, dddd, 13.9, 10.1, 9.5, 1.5) | 4.16 | (1H, dd, 8.6, 4.0)   | 4.25 | (1H, br.s)          |  |
| 8b           | 2.55 | (1H, m)                          | _    |                      |      |                     |  |
| 9            | 5.10 | (1H, m)                          | 4.76 | (1H, dq, 7.9, 6.3)   | 4.97 | (1H, q, 6.6)        |  |
| 12           | 6.06 | (1H, dd, 15.5, 2.0)              | 5.96 | (1H, d, 15.8)        | 6.04 | (1H, dd, 15.5, 1.5) |  |
| 13           | 6.89 | (1H, dd, 15.5, 4.8)              | 6.59 | (1H, dd, 15.8, 8.6)  | 6.87 | (1H, dd, 15.5, 3.3) |  |
| 14           | 4.16 | (1H, dd, 4.8, 4.8)               | 5.05 | (1H, dd, 8.6, 4.0)   | 4.13 | (1H, br.s)          |  |
| 15           | 4.92 | (1H, dq, 6.5, 4.8)               | 4.06 | (1H, dq, 4.0, 6.6)   | 4.86 | (1H, q, 6.6)        |  |
| 3Me          | 1.33 | (3H, d, 5.5)                     | 1.35 | (3H, d, 6.3)         | 1.33 | (3H, d, 6.3)        |  |
| 9 <i>Me</i>  | 1.38 | (3H, d, 5.5)                     | 1.47 | (3H, d, 6.3)         | 1.45 | (3H, d, 6.6)        |  |
| 15 <i>Me</i> | 1.36 | (3H, d, 6.3)                     | 1.22 | (3H, d, 6.6)         | 1.37 | (3H, d, 6.6)        |  |

M: Multiplicity. a Macrosphelide A (3); ref. 2.

Table 3. <sup>13</sup>C NMR chemical shifts of 1, 2 and 3 in CDCl<sub>3</sub>.


| С            | 1     | M | (⊿1-3)  | 2     | M   | (⊿2-3) | 3ª    | M |
|--------------|-------|---|---------|-------|-----|--------|-------|---|
| 1            | 170.0 | s | -0.2    | 169.7 | s   | -0.5   | 170.2 | s |
| 2            | 40.9  | t | $\pm 0$ | 41.5  | t   | +0.6   | 40.9  | t |
| 3            | 67.4  | d | -0.3    | 69.2  | d   | +1.5   | 67.7  | d |
| 5            | 164.8 | S | +0.1    | 164.4 | s   | -0.3   | 164.7 | s |
| 6            | 124.7 | d | +2.0    | 124.3 | d   | +1.6   | 122.7 | d |
| 7            | 143.8 | d | -1.4    | 145.8 | d   | +0.6   | 145.2 | d |
| 8            | 38.8  | t | -35.9   | 75.9  | d   | +1.2   | 74.7  | d |
| 9            | 69.0  | d | -5.8    | 72.5  | d   | -2.3   | 74.8  | d |
| 11           | 165.0 | S | -0.8    | 164.1 | s   | -1.7   | 165.8 | S |
| 12           | 123.0 | d | +0.8    | 126.9 | d   | +4.7   | 122.2 | d |
| 13           | 144.9 | d | -1.3    | 140.8 | d · | -5.7   | 146.2 | ď |
| 14           | 72.9  | d | -0.1    | 77.7  | d   | +4.7   | 73.0  | d |
| 15           | 73.7  | d | -0.2    | 68.1  | d   | -5.8   | 73.9  | d |
| 3Me          | 19.5  | q | -0.1    | 20.2  | q   | +0.6   | 19.6  | q |
| 9Me          | 20.5  | q | +2.6    | 17.8  | q   | -0.1   | 17.9  | q |
| 15 <i>Me</i> | 17.5  | ĝ | -0.3    | 18.3  | q   | +0.5   | 17.8  | q |

M: Multiplicity. \* Macrosphelide A (3); ref. 2.

8-deoxymacrosphelide A as shown in Fig. 1.

Compound 2 was obtained as colorless oil. The molecular formula ( $C_{16}H_{22}O_8$ ) assigned based on the HR-FAB-MS of 2 gave the same as that of 3, but 2 did not show similar pattern to that of 3 on <sup>1</sup>H NMR spectra (Table 2). The <sup>1</sup>H-<sup>1</sup>H COSY (data not shown) and HMBC experiment of 2 support that compound 2 possesses the same planar structure of 3 (Fig.1). The NOE experiments (400 MHz) of 2 did not show any information about the stereochemistry. The proton signals at H-14 ( $\delta$  5.05) shifted downfield of 0.92 ppm compared with that of 3. On the other hand, the proton signals adjacent to the methyl carbon at H-15 ( $\delta$  4.06) shifted upfield of 0.8 ppm. In the <sup>13</sup>C NMR spectrum of

Fig. 1. Structure of 1 and 2.



Arrows show key  ${}^{1}\text{H-}{}^{13}\text{C}$  long range couplings detected by HMBC experiments (J = 4.0 Hz).

2 (Table 3), the chemical shifts of carbon signals showed similarly to those of 3, except for signals of C-12, C-13, C-14 and C-15. In the <sup>1</sup>H NMR spectrum of 2 (Table 2), the coupling constants between  $\delta$  5.96 (d, J=15.8, H-12) and  $\delta$  6.59, (d, J=15.8, 8.6 Hz, H-13) showed the same *trans* configuration as that of 3. Therefore, macrosphelide D (2) is presumed to be a stereoisomer of macrosphelide A (3) at C-14 or C-15 positions. The stereochemistry of 1 and 2 are under study using organic synthesis approach.

Biological activities of new macrospherides were examined according to the previous methods<sup>1)</sup>. Macrosphelides were assayed in an adhesion assay system using HL-60 cells and HUVEC cells. The IC<sub>50</sub> values of 1 and 2 were  $67.5 \,\mu\text{M}$  and  $25.0 \,\mu\text{M}$ , respectively. Compounds 1 and 2 had no effect on cell growth against B16 melanoma, HeLa S3 carcinoma, P388 leukemia, L929 fibroblast, Shionogi carcinoma (SC-115), human prostate tumor

(LNCap, PC-3), human leukemia (CEM, THP-1) and calf pulmonary artery endothelial cell (CPAE) at concentration of 307  $\mu$ M and 292  $\mu$ M, respectively (data not shown). They also showed no antimicrobial activity at a concentration of 1000  $\mu$ g/ml (data not shown).

Thus we isolated two new inhibitors of cell adhesion molecule, macrosphelides C (1) and D (2), as derivatives of macrosphelides A and B from the fermentation broth of *Microsphaeropsis* sp. FO-5050. Recently, arthritis<sup>4)</sup> and metastasis<sup>5)</sup> were reported to be associated with adhesion molecules, and anti-adhesion compounds were expected to be effective in the treatment of inflammation and metastasis<sup>6)</sup>. Therefore, we are interested in relationships between the structure and the activity of these macrosphelides, and the results will be reported in elsewhere.

## Acknowledgments

We express our thanks to Dr. T. SUNAZUKA, School of Pharmaceutical Sciences, Kitasato University, for useful comments and discussion. This work was supported in part by Grants-in Aid from the Ministry of Education, Science and Culture, Japan and funds from the Japan Keirin Association.

## References

- HAYASHI, M.; Y.-P. KIM, H. HIRAOKA, M. NATORI, S. TAKAMATSU, T. KAWAKUBO, R. MASUMA, K. KOMIYAMA & S. ŌMURA: Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 48: 1435~1439, 1995
- 2) TAKAMATSU, S.; Y.-P. KIM, M. HAYASHI, H. HIRAOKA, M. NATORI, K. KOMIYAMA & S. ŌMURA: Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. II. Physicochemical properties and structural elucidation. J. Antibiotics 49: 95~98, 1996
- 3) SUNAZUKA, T.; T. HIROSE, Y. HARIGAYA, S. TAKAMATSU, Y.-P. KIM, M. HAYASHI, K. KOMIYAMA, S. ŌMURA & A. B. SMITH, III: The relative and stereochemistries and total synthesis of (+)-macrosphelides A and B, potent orally bioavailable inhibitors of cell-cell adhesion molecule. J. Am. Chem. Soc., (acceptable)
- 4) IIGO, Y.; T. TAKAHASHI, T. TAMATANI, M. MIYASAKA, T. HIGASHIDA, H. YAGITA, K. OKUMURA & W. TSUKUDA: ICAM-1-dependent-pathway is critically involved in pathologenesis of adjuvant arthritis in rats. J. Immunol. 147: 4167~4171, 1991
- 5) LAURI, D.; L. NEEDHAM, I. MARTIN-PADURA & E. DEJANA: Tumor cell adhesion to endothelial cells: endothelial leukocyte adhesion molecule-1 as an inducible adhesive receptor specific for colon carcinoma cells. J. Natl. Cancer Inst. 83: 1321~1324, 1991
- 6) NAKAMORI, S.; M. KAMEYAMA, S. IMAOKA, H. FURUKAWA, O. ISHIKAWA, Y. SASAKI, Y. IZUMI & T. IRIMURA: Involvement of carbohydrate antigen sialyl Lewis<sup>x</sup> in colorectal cancer metastasis. Dis. Colon Rectum. 40: 420~431, 1997